

in central necrotic area, 77% decrease in microvasculature, and 7-fold increase in tumor cell apoptosis in the remaining viable rim 24 h post-treatment. Ultrasound imaging confirmed that STA-9584 rapidly and efficiently blocked blood flow in highly perfused tumor regions. Moreover, cardiovascular effects were evaluated in the Langendorff assay and telemetered dogs, and cardiovascular toxicity was not predicted to be dose-limiting. This bioactivity profile distinguishes STA-9584 from the combretastatin class and identifies the compound as a promising new therapeutic VDA candidate.

Footnotes

- Article, publication date, and citation information can be found at http://jpet.aspetjournals.org. http://dx.doi.org/10.1124/jpet.112.196873.
- \leftarrow The online version of this article (available at http://jpet.aspetjournals.org) contains supplemental material.
- ABBREVIATIONS:

VDA

vascular disrupting agent

CA4

combretastatin A-4

CA4P

CA4 phosphate

ASA404

5,6-dimethylxanthenone-4 acetic acid

MTD

maximal tolerated dose

NSCLC

non-small-cell lung cancer

TUNEL

terminal deoxynucleotidyl transferase dUTP nick-end labeling

HUVEC

human umbilical vein endothelial cell

DMSO

dimethyl sulfoxide

PBMC

peripheral blood mononuclear cell

SCID

severe combined immunodeficient

LVP_{dev}

developed left ventricular pressure

Article

- Abstract
- Introduction
- Materials and Methods
- Results
- Discussion
- Authorship Contributions
- Acknowledgments
- Footnotes
- O References
- Figures & Data
- Info & Metrics
- eLetters
- PDF + SI
- PDF \mathbf{O}

Related Articles

Vascular Disrupting Agent STA-9584 Targets Microvasculature at the Center and Periphery of Tumor

PubMed Google Scholar

Cited By...

- More in this TOC Section
- Similar Articles

We recommend

Vascular Disrupting Agent STA-9584 Targets Microvasculature at the Center and Periphery of Tumor

American Society for Pharmacology and Experimental Therapeutics, J Pharmacol Exp Ther, 2012

Biological Characterization of an Improved Pyrrole-Based Colchicine Site Agent Identified through Structure-Based Design Cristina C. Rohena et al., Mol Pharmacol, 2016

Tissue distribution and metabolism of the tyrosine kinase inhibitor ZD6474 (Zactima) in tumor-bearing nude mice following oral dosing.

Daniel L Gustafson et al., J Pharmacol Exp Ther, 2006

QTc

corrected QT interval

T/C

treated/control

Oxi4503

[3-methoxy-2-phosphonatooxy-6-[(Z)-2-(3,4,5-trimethoxyphenyl)ethenyl]phenyl] phosphate

AVE8062

(2S)-2-amino-3-hydroxy-N-[2-methoxy-5-[(Z)-2-(3,4,5-trimethoxyphenyl)ethenyl]phenyl]propanamide

AVE8063

(Z)-2-methoxy-5-(3,4,5-trimethoxystyryl)aniline

MN-029

methyl-[5-[[4-[[(2S)-2-aminopropanoyl]amino]phenyl]sulfanyl]-1H-benzimidazol-2-yl]carbamate monohydrochloride

ZD6126

N-acetylcochinol-O-phosphate

NPI-2358

(3Z,6Z)-3-[(5-tert-butyl-1H-imidazol-4-yl)methylene]-6-(phenylmethylene)-2,5-piperazinedione

CYT997

N-ethyl-N'-[2-methoxy-4-[5-methyl-4-[[(1S)-1-(3-pyridinyl)butyl]amino]-2-pyrimidinyl]phenyl]urea

STA-9122

2-methoxy-5-(5-(3,4,5-trimethoxyphenyl)isoxazol-4-yl)aniline

STA-9584

(S)-2-amino-N-(2-methoxy-5-(5-(3,4,5-trimethoxyphenyl)isoxazol-4-yl)phenyl)-3-phenylpropanamide hydrochloride

ZD6216

(5S)-5-(acetylamino)-9,10,11-trimethoxy-6,7-dihydro-5H-dibenzo[a,c]cyclohepten-3yl dihydrogenphosphate.

Received May 25, 2012.

Accepted July 25, 2012.

Copyright © 2012 by The American Society for Pharmacology and Experimental Therapeutics

View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years.

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.

Pharmacological Characterization of IW-1973, a Novel Soluble Guanylate Cyclase Stimulator with Extensive Tissue Distribution, Antihypertensive, Anti-Inflammatory, and Antifibrotic Effects in Preclinical Models of Disease Jenny V. Tobin et al., J Pharmacol Exp Ther, 2018

Energy management system design and testing for smart buildings under uncertain generation (wind/photovoltaic) and demand Syed Furgan Rafique et al., Tsinghua Science and Technology, 2018

Side-Channel Attacks in a Real Scenario 🗹 Ming Tang et al., Tsinghua Science and Technology, 2018

Evaluation of 1,4-naphthoquinone derivatives as antibacterial agents: activity and mechanistic studies Zhizhuo Liu et al., Frontiers of Environmental Science & Engineering, 2023

Detection and tracking method of floating objects on water surface based on improved SSD model and adaptive filtering algorithm

CHEN Renfei et al., Advanced Engineering Sciences, 2022

Powered by **TREND MD**

0

- Click here for information on institutional subscriptions.
- Click here for information on individual ASPET membership.

Log in using your username and password

Username	Password
Log in	

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have

Purchase Access (\$35)

G Previous

Next 🕤

▲ Back to top

Home

Alerts

f У in 🔊

Navigate	More Information	ASPET's Other Journals
Current Issue	About JPET	Drug Metabolism and Disposition
Fast Forward by date	Editorial Board	Molecular Pharmacology
Fast Forward by section	Instructions to Authors	Pharmacological Reviews
Latest Articles	Submit a Manuscript	Pharmacology Research & Perspectives
Archive	Customized Alerts	
Search for Articles	RSS Feeds	
Feedback	Subscriptions	
ASPET	Permissions	
	Terms & Conditions of Use	

THANK YOU FOR ACCEPTING COOKIES